Acid-base catalyst supported on mesoporous silica and anchored in organocomposites for the processing of biodiesel

José Sebastião Cidreira Vieira a, Adel Bakkour b, Ana Lúcia de Lima b, Célia Machado Ronconi c, Cláudio J. A. Mota d.

aInstituto Federal do Maranhão, Campus Zé Doça, Rua da Tecnologia, 215- Vila Amorim, Zé Doça, Brazil.
bUniversidade Federal do Rio de Janeiro, Instituto de Química. Av Athos da Silveira Ramos 149, CT Bl E, Rio de Janeiro, Brazil.
cUniversidade Federal Fluminense, Instituto de Química, Campus do Valonguinho, s/n, Centro, Niterói, Rio de Janeiro, Brazil.
dUniversidade Federal do Rio de Janeiro, Instituto de Química. Av Athos da Silveira Ramos 149, CT Bl A, Rio de Janeiro, Brazil.

Keywords: Acidity index, maximum, one single line maximum (style: Times New Roman italic 9pt)

1. Introduction

An interesting possibility to process biodiesel from raw materials with a high acidity index is the immobilization of sulphonic acid and amino functions on the surface of mesoporous silica such as MCM-41 and SBA-15. These materials show excellent catalytic activity and less deactivation along the esterification-transesterification of vegetable oils and animal fats with high acidity index [1]. The development of a bifunctional catalyst, having external acid sites, capable of promoting esterification of free fatty acids, and internal basic sites for transesterifying triglycerides is an economically feasible solution. In a single step, and without the need for catalyst exchange, the low quality raw material can be esterified and transesterified simultaneously having the advantage of the two types of catalysis: acid for esterification and basic for transesterification [2].

The final cost of biodiesel production can be reduced considerably with the inclusion of low-cost raw materials such as frying oils, inedible oils and animal fats. The great challenge is to implement technologies capable of enabling the productive process of this energy input [3,4]. The objective of this work was to synthesize, characterize and catalytically test a propylsulfonic acid and piperazine functionalized support bifunctional catalyst to obtain biodiesel from the native oil of macaúba pulp (Acrocomia aculeata).

2. Experimental Part

The bifunctional catalyst supported by MCM-41 and anchored with propylsulfonic acid and piperazine (pr-HSO3 / MCM-41 / PPZ) was synthesized from the dissolution of Cetrimonium bromide (CTAB) in deionized water and sodium hydroxide solution. Then 1.0 g of pre-prepared basic catalyst (MCM-41 / PPZ), 0.0369 mol tetraethyl orthosilicate (TEOS) as silica source and 0.011 mol (3-Meraptopropil) trimethoxysilane (MPTMS) as sulfonic acid precursor were added. The surfactant was extracted with boiling acidic methanolic solution. The thiol was oxidized to HSO3-moiety with the addition of H2O2. The product obtained then was dried calcined for characterization by SAXS, FTIR and NMR of 28Si. Its catalytic activity was investigated through esterification-transesterification reaction to obtain biodiesel from the native oil of macaúba pulp (Acrocomia aculeata) which contained 34% of free fatty acids. The catalytic test were performed in a Parr 4848 reactor of 100 mL capacity. The reaction system consisted of 0.0142 mol of oil, 0.11 mol of methanol, 0.8 g of catalyst, molar ratio of 1: 8 (oil:methanol), temperature 120°C and reaction time was 180 min.

3. Results and discussion

Figure 1 shows the spectra in the IR spectra for the mesoporous support and for the bifunctional catalyst. Both materials showed absorption bands between 1836-1723 cm⁻¹ indicative to H2O bonds, as well as condensed bands between 3452-3421 cm⁻¹ attributed to the OH group. The silanols groups reacted with the functional groups giving rise to the bifunctional catalyst. Besides the axial deformation of the bond CH2= 2124-2860 cm⁻¹ the catalyst, pr-HSO3 / MCM-41 / PPZ, showed absorption bands at 1401 cm⁻¹ alluding to the SO3 group and at 3262 cm⁻¹ attributed to the NH bond confirming the acid and alkaline character.
condensation and evaluated in the simultaneous esterification-transesterification reaction of macaúba oil in a yield-range of 27-97% of methyl ester. The characterization of the pr-HSO3/MCM-41/PPZ revealed, that the immobilization of pr-HSO3 and piperazine influenced the removal of Si-OH groups

Acknowledgments
The authors are grateful for the financial support granted by CAPES, CNPq, FAPERJ and PROQUALIS of IFMA-Campus Zé Doca

References

Table 1 - Yield of esterification-transesterification reaction of macaúba oil

<table>
<thead>
<tr>
<th>Bifunctional Catalyst</th>
<th>Amount of catalyst (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>pr-HSO3/MCM-1/PPZ</td>
<td>27</td>
</tr>
</tbody>
</table>

4. Conclusions
The acid-base heterogeneous catalytic supported on MCM-41 and anchored with propylsulfonic and piperazine groups was synthesized by co-

Figure 1 - FTIR spectra of the bifunctional catalyst.

Figure 2 illustrates the 29Si NMR spectra for the bond the functionalized and modified catalyst. Pure MCM-41 revealed sites of type Q2, Q3 and Q4. The comparing with the spectra of pr-HSO3 / MCM-41 / PPZ reveal in addition to the Q-sites of the support material T-sites indicative of the C-Si type bonds. The propylsulfonic and piperazine groups influenced the reduction of Si-OH groups and though the appearance of covalent bonds.

Figure 2 - 29Si NMR spectra for the bifunctional catalyst and MCM-41